جواب کاردرکلاس صفحه 61 ریاضی دهم انسانی

  • ویدئو
  • هوش مصنوعی
  • تصویر حل تشریحی و گام به گام جواب کاردرکلاس صفحه 61 ریاضی دهم انسانی

    ویدیو آموزش جواب کاردرکلاس صفحه 61 ریاضی دهم انسانی

    استاد عالیه سادات حسینی

    پاسخ هوش مصنوعی به جواب کاردرکلاس صفحه 61 ریاضی دهم انسانی

    عنوان فعالیت: کار در کلاس تابع محیط و مساحت مستطیل ریاضی دهم انسانی ضابطه‌ی تابع محیط مستطیل‌هایی را که طول آن‌ها $\mathbf{4}$ واحد بیشتر از عرض آن‌ها است، بر حسب عرض آن‌ها بنویسید و نشان دهید یک تابع خطی است. آیا تابع مساحت آن‌ها نیز یک تابع خطی است؟

    پاسخ تشریحی و گام به گام کار در کلاس تابع محیط و مساحت مستطیل صفحه 61 ریاضی دهم انسانی سلام به شما دانش‌آموزان خوب! این فعالیت به ما کمک می‌کند تا تفاوت بین **تابع خطی (درجه اول)** و **تابع غیرخطی (درجه دوم)** را در یک مثال هندسی درک کنیم. ### ۱. تعیین ضابطه تابع محیط ($athbf{P(x)}$) و اثبات خطی بودن **گام ۱: تعریف متغیرها** * **عرض مستطیل (متغیر مستقل):** $\mathbf{x}$ * **طول مستطیل:** «۴ واحد بیشتر از عرض» $\mathbf{x + 4}$ **گام ۲: نوشتن ضابطه محیط** فرمول محیط مستطیل: $\mathbf{\text{محیط } = 2 \times (\text{طول} + \text{عرض})}$ $$\mathbf{P(x) = 2 \times ( (x + 4) + x )}$$ $$\mathbf{P(x) = 2 \times (2x + 4)}$$ $$\mathbf{P(x) = 4x + 8}$$ **گام ۳: اثبات خطی بودن** تابع خطی، تابعی به شکل $\mathbf{f(x) = mx + b}$ (یا $\mathbf{ax + b}$) است که در آن بالاترین توان $\mathbf{x}$ برابر $\mathbf{1}$ باشد. * **مقایسه:** ضابطه‌ی $\mathbf{P(x) = 4x + 8}$ با ضابطه‌ی کلی $\mathbf{mx + b}$ مطابقت دارد، که در آن $\mathbf{m = 4}$ (شیب) و $\mathbf{b = 8}$ (عرض از مبدأ) است. * **نتیجه:** بله، تابع محیط $\mathbf{P(x) = 4x + 8}$ یک **تابع خطی** است. *** ### ۲. آیا تابع مساحت ($athbf{A(x)}$) یک تابع خطی است؟ **گام ۱: نوشتن ضابطه مساحت** فرمول مساحت مستطیل: $\mathbf{\text{مساحت } = \text{طول} \times \text{عرض}}$ $$\mathbf{A(x) = (x + 4) \times x}$$ $$\mathbf{A(x) = x^2 + 4x}$$ **گام ۲: تحلیل ضابطه** * **بررسی توان $\mathbf{x}$:** در ضابطه‌ی $\mathbf{A(x) = x^2 + 4x}$، بالاترین توان $\mathbf{x}$ برابر $\mathbf{2}$ است. * **نتیجه:** خیر، تابع مساحت **یک تابع خطی نیست**؛ بلکه یک **تابع درجه دوم** (یا سهمی) است. **جمع‌بندی:** تابع محیط ($\mathbf{P(x) = 4x + 8}$) خطی است زیرا با افزایش عرض، محیط به صورت **ثابت** افزایش می‌یابد. اما تابع مساحت ($\mathbf{A(x) = x^2 + 4x}$) خطی نیست؛ زیرا با افزایش عرض، مساحت با **توان ۲** و به شکل نمایی افزایش می‌یابد و نمودار آن یک منحنی (سهمی) خواهد بود.

    شما اکنون در حال پاسخ به یکی از کامنت های می باشید

    نام و نام خانوادگی :

    ایمیل :

    سوال امنیتی :

    8-5

    نظر خود را وارد نمایید :